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We present a generic reweighting method for nonequilibrium Markov processes. With nonequilibrium Monte
Carlo simulations at a single temperature, one calculates the time evolution of physical quantities at different
temperatures, which greatly saves computational time. Using the dynamical finite-size scaling analysis for the
nonequilibrium relaxation, one can study the dynamical properties of phase transitions together with the
equilibrium ones. We demonstrate the procedure for the Ising model with the Metropolis algorithm, but the
present formalism is general and can be applied to a variety of systems as well as with different Monte Carlo
update schemes.
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The Monte Carlo simulation has served as a standarcelative probability of generating the same patkat another
method to treat many-body problems in statistical physicsemperaturel’.
[1]. Metropolis et al. [2] used the importance sampling,  Suppose many simulations were performed at an inverse
which generates the states with a probability proportional taemperaturgd=1/kgT to obtain a set of pathd, j=1,...,n.
the Boltzmann factor. The importance sampling method caigFrom now on,3 will be sometimes referred to as tempera-
be considered as a reweighting technique in a sense that oth@e) The dynamical thermal average of some quar@{y)
samples a trial distribution and takes an average for the truean be obtained ng(t»B:(l/n)z]!‘:lQ()z{)_ To calculate the
distribution with reweighting. A more direct way of re- dynamical thermal average at another temperafirethe
weighting is found in the histogram reweighting method duemeasured quantit@(x}) has to be reweighted with a set of

to Ferrenberg and Swendsg8], where equilibrium thermal - yeightswi. For the same set of patfik the thermal average
averages for a range of temperatures can be calculated frog B is obtained as

a single simulation. This method greatly improves the effi-

ciencies of Monte Carlo simulations; however, the histogram no no

reweighting technique must be used only to calculate equi- Q) =D WQx) / D w. (2)
librium properties. =1 j=1

Recently, the nonequilibrium relaxation method has bee"AIthough not labeled explicitly in Eq2), the set of weights

successfully applied to the study of critical phenomena\N{ depend on the simulation temperaty#and the new tem-

[4-7]. In the nonequilibrium relaxation met.hod, sm_ulanons perature8’. To calculate the weights, the following algo-
were performed for several temperatures; the critical tem:. L o
rithm is implemented for each paffy j=1,...,n.

perature, the dynamical exponent, and other quantities are (1) Assume that the Monte Carlo simulation is carried out
estimated using the scaling behavior of the nonequilibrium SN i .
. Y at a temperaturg, and a pathi=(o7, ..., o}) for some arbi-
process. If we combine the strength of nonequilibrium relax- arv timet is obtained
ation method with a reweighting technique, we can expect affary ' ined. y . . .
effective method of simulation. (2) To go from timet, I_e_t ') be a trial _conﬁgu_ratlon_ and
In this paper, we will present a generic reweightingT(U,lM) be the probability to select this configuration. If

method that is applicable to both equilibrium and nonequi-the trial move is accepted with the acceptance probability

o . L e g ; i

librium systems. With reweighting at nonequilibrium, only a AF("_”,‘J.Tt)’ then the new conflgurat}on_ atjt+1 becomes
simulation at a single temperature is required. Our method oft+1=¢"'- If the move is not accepted,, = ;. .
reweighting may also be applicable in a multitude of other (3) In terms of the transition probabilit? (o, |o1), we

nonequilibrium processes, such as the contact profgiss May write it as Pg(ol,|o]) =T(o"|a})Ag(a" [ o}) if the

and the driven diffusive systenj8]. move is accepted and asPy(ol,|ol)=T(c"|o})[1
Reweighting at nonequilibrium can be easily understood-Ag(c’!|ol)] otherwise. .
as follows. Consider every simulation up to ttth Monte (4) Then the appropriate weightg,, can be obtained by
Carlo step as a sequence of stamspath, o
Wi = MWJ with wi =1 (3)
X = (01,0%,...,0¢), (1) 1T Py(ol,lal) 17
whereo is the system configuration at timeHereafter, we (5) Repeat steps 2 to 4 untifeaches some predetermined

refer to the Monte Carlo step simply as the time of simula-maximum simulation time.
tion. Such a patlx; can be generated using any Monte Carlo  For each patl, j=1,...,n, these steps are repeated. Step
method at a temperatuile The objective is to calculate the 2 is simply the standard Monte Carlo procedure of accep-

1539-3755/2005/11)/0151024)/$23.00 015102-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

H. K. LEE AND Y. OKABE PHYSICAL REVIEW E 71, 015102R) (2005

tance and rejection. Step 3 calculates the transition probabil- i

ity after the decision on acceptance is made. Step 4 updates 0.71

the appropriate weight. In this method, essentially, the usual Z

Monte Carlo update is carried out, and at the same time the 0'6;

weights are updated. __05F
The proof of Eq(3) involves two ingredients, the sequen- E E

tial importance samplingSIS) [10-13 method and a generic 0.4F

Monte Carlo method. A brief description of the SIS method 0 3i

will be discussed here. The SIS method assumes that the Tl

distribution for a multidimensional statge=(o,05,...,0y) is 0.2k |

known and let it be denoted by, (X,). Implementation of the Lo ‘15‘00; T . \

SIS algorithm is as follows: _ 10 100 1000 10000
(1) Draw o}, , from a trial distributiong,;(o%, ,%,) to form T (MCSS)

i{+1:(>§10{+1)-

' . . FIG. 1. PI f ization fi igh fi
(2) The importance weight 4t 1 is given by G ot of magnetization for reweighted temperatures from

simulations at a single temperatufe2.270(bold line). From top

to bottom,T=2.268, 2.269, 2.270, 2.271, 2.272. The system size is
5 W (4) L=64. 7 represents the Monte Carlo time in units of MCSS. The
71't()(t)9t+1(<7t+1|xt) inset shows the region between 1000 to 2000 MCSS with represen-

The key to understanding the reweighting method is to realtative error bars.

ize that in a Monte Carlo simulation, the time sequexicis ) _ o )
sampled from the true probability distribution of the path atL X L lattice. We use the single spin-flip update with the
some temperatur8. The Monte Carlo method is Markovian Metropolis acceptance rate, but other update schemes are

vl
P 1 (Xte) ;
= ey

and the probability of obtaining the path is given by also applicable. The simulation is performed3athe objec-
. o o _ tive is to reweight it toB’. The system configuration is
Ps(Xt) = Pglat|ol_y) - -Pglob o) P(a)), (5 denoted by the states of all spins={s;,- - -,s\}, whereN is

the total number of sites. The initial system configuration at
timet=1 is set tos,=+1 for allk=1,---,N. Hencew) =1 for
j=1,--,n; recall thatj is used for indexing different paths.
For each patt!=(d), 0}, -, a}), _

(1) Choose a spin and flip it with probabilitps(c’}|a})

wherePg(ol|ol_,) is the probability of getting a system con-
figurationo! at timet, given that the system configuration is
ol_, at an earlier time—-1. P(¢?}) is the probability of choos-

ing the initial configuration. One may obtain the probability

distribution function,Pﬁ,(i{), of the path at another tempera- _ N .
ture B’ using P4(x{) as a trial distribution. The SIS method t_hrerznggn ﬁi)g( PAB)]. Here,AE s the energy change due to

can then be used by defining the following quantities in Eq. (2) At this point, there are three possible outcones.f

(4) as AE=Q0, the proposed spin flip is always accepted; and we
T (Kyg) = pﬁ,(i{ﬂ), (6)  obtainwi,;=w;x1. (b) If AE>0 and the proposed spin
flip is accepted, we obtainl, ; =w! X exd—(8' - B)AE]. (c)
If AE>0 and the proposed spin flip is rejected, we obtain
W, =w! X [1-exd~-B'AE)]/[1-exd-BAE)].
[ [ (3) Although the weights should be updated for every
Grra(0t|X) = Pplog,4[x). (8 single spin flip move, thermal quantities may be recorded
The requirement for the Monte Carlo process being MarkovOnly once pem single spin-flip steps, for example, to save
ian implies PB(U{+1|>Z{):PB(U{+1|U{), and using Eq(5), we  Memory. Letr be_ the time in unit of Monte Carlo ste_ps per
obtain site (MCSS); weights w. and moments of magnetization
_ o (mY)), A=1,2,4(i.e., m, m?, andm* moment$ are accumu-
Pgi(Xisp) i Py (allol) J. © lated into the sums3;w, E_J-(rn”)',_andEj(m")L\_/vL.
Pﬂ’(i{)Pﬁ(UleZ][) t Pﬁ(a'{+1| o)) v ; Wia carried o'ut many S|mulat|qns to obtain a set of paths
X{, j=1,---,n. Finally, the dynamical thermal averages for
which is as presented in E(B). The initial condition in Eq. each timer, <m(7-)*>3,, for example, can be calculated from
(3) is wi=1 because the initial system configuration is cho-the accumulated sums using E8). In practice, reweighting
sen from a distribution independent of temperature. to many temperature8;, B, -- were made at the same time
To illustrate how the reweighting algorithm is imple- in a single run.
mented, we use the ferromagnetic Ising model on a square Figure 1 shows the plots of the temporal evolution of

m(x) = Pp(x), ()

-
Wi =

lattice. Its Hamiltonian is given by magnetization for several reweighted temperatures from
B simulations at a single temperatufe=2.270(bold line) on
H=-2 58, (100 the L=64 square lattice. These data were generated with

W three independent runs to estimate error bars; for each run,
where the sum is over nearest neighbors aptiakes the averages were taken over 2:940° samples. The effective
values =1. Periodic boundary conditions are used on arange is about AT=0.002 for
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FIG. 2. Values ofm(n*/{m(7)2)? for reweighted temperatures T

from simulations aff =2.270. From top to botton,=2.272, 2.271,
2.270, 2.269, 2.268, 2.267. To check the range of reweighting, an FIG. 3. Binder's cumulants fok =32, L =48, L =64, andL=80.
additional simulation was performed Bt 2.268 and reweighted to 1he Simulation temperatures are indicated by arrows2.27 for
T=2.270. The dashed line shows(?)*/(m(1)?)? at T=2.270 re-  L=32,48,T=2.269 forL=64,80. Error bars, when not shown, are
weighted fromT=2.268. The inset shows that the difference be-Smaller than the size of the symbols.
tween the dashed line and solid line is about B> * while the
error bars on(m(7)*)/(m(7)?? are of the order 1¢. The system the determination of the critical temperatufie. In the
size isL=32. 7 represents the Monte Carlo time in units of MCSS. present case, we confirm that the exagct2.2691.. is well
reproduced. Simulation temperatures are indicated by ar-
L=64. The inset shows the region between 1000 and 200®ws; T=2.27 forL=32, 48, andl=2.269 forL=64, 80. The
MCSS with representative error bars. The error bars becomeweighting temperature range we used\if=0.004 forL
larger as reweighting is done at temperatures further away 32, 48,AT=0.002 forL=64, andAT=5x 10" for L=80.
from the simulation temperature. Similar to the argument pugrror bars were generated with several independent simula-
forward by Ferrenberg and Swendg@h, reweighting is ef-  tions, and they are smaller than the size of the symbols. This
fective when the distributionB4(x!) and P, (x!) have suffi- ~ suggests that the effective reweighting temperature range is
cient overlaps. An additional simulation, performed Tt actually larger than the temperature range we used in our
=2.268, for example, yields the results consistent with thecalculations. For each independent run, averages were taken
reweighted ones within statistical errors. A more detailedwith 1.28x 10° samples forL=32, 2.59x 10° samples for
comparison of actual and reweighted data will be discusseli=48, 1.28< 10° samples fot.=64, and 4x 10 samples for
shortly. L=80.

The ratio of the moments of the order parameter is used The dynamical finite-size scalinfl4] can be used in
for the analysis of the phase transitiff8]. Figure 2 shows combination with nonequilibrium relaxatidd5,16. Making
plots of (m(D*/{m(n?)? for several reweighted tempera- use of the scaling forni17],
tures from simulations at=2.270. From top to bottoml 4 22 _ -
=2.272, 2.271, 2.270, 2.269, 2.268, 2267, The lattice size (m(nHKm(n)7)" = g(rL™) (19
wasL =32 and accuracy of reweighting was checked by perthe dynamical exponenz can be estimated by plotting
forming an additional simulation a&k=2.268. This simula- (m(7)*/{(m(7)?)?> versus 7."% at the knownT,=2.2691..
tion was then reweighted t0=2.270 and compared to the value (Fig. 4. The estimate af is obtained when curves of
curve from the original simulation. The dashed line in Fig. 2different sizes are collapsed into a single curve. The best fit
shows (m(7)*)/(m(7)?)? at T=2.270 reweighted fromT  for the data collapse is obtained by choosirg
=2.268. The inset shows that the difference between the2.143+0.063 for all the data shown in Fig. 4. For the
dashed line and solid line is about<3.0™* while the error  curves ofL=32 and 48, the best fit occurs z£2.11+0.02.
bars of(m(7)%/{m(7)?)? are of the order 1. Averages were The best fit is obtained a=2.138+0.039 folL=48 and 64,
taken with the 1.2& 10° samples. The systematic errors dueand atz=2.143+0.063 fol.=64 and 80. We have given the
to reweighting are smaller than the statistical errors for thisrror bars orz from the variance of the estimate oby a set
temperature shift. of independent runs. Simulations were performed at rela-

Equilibrium properties can be calculated using reweight-ively small system sizes compared to more extensive simu-
ing by performing the simulation up to equilibrium and be- lations[17,18. Considering the effect of corrections to scal-
yond, and then disregarding the data at nonequilibrium. Inng, our value ofz is, within the error bars, approaching the
this domain, our reweighting method yields the same resultsalues that were previously reportex2.16~2.17[17-19.
as the histogram reweighting8] method. Figure 3 shows To summarize, we have presented a reweighting method
Binder’s cumulant§13] for L=32,L=48,L=64, andL=80.  for nonequilibrium Markov processes.We have shown the
Simulations were performed at one temperature for each labasis of this method starting from the formulation of the SIS
tice size. The crossing of curves with different sizes yieldsmethod. As a demonstration, we have used the Ising model
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1207 to extract dynamical and also static properties without wor-
rying about finite-size effects. The systematic analysis of
finite-size effects, the finite-size scalifigi4—16, is another
way of studying nonequilibrium relaxation. The nonequilib-
rium reweighting is useful when it is combined with the
latter approach. We should note that this method is neither
restricted to single spin-flip updates nor the Ising model. This
method is applicable, in principle, whenever the ratio of
probabilities P (ot,,|01)/ Pg(ot,4|of) can be calculated nu-
merically. It should be applicable with other Monte Carlo

0001 001 0.1 1 update schemes such as the cluster update sch@gx]

-Z

as well as theN-fold way method[22]. We should mention
that Dickman[23] proposed a similar reweighting method

FIG. 4. Finite-size scaling plot ofm(n)*)/(m(n?? for L=32,  for the application to the contact process. However, our for-
48, 64, and 80 af.=2.2691--. The dynamical exponent is chosen malism is more extensive and general.

asz=2.143 for this plot.
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