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We present a generic reweighting method for nonequilibrium Markov processes. With nonequilibrium Monte
Carlo simulations at a single temperature, one calculates the time evolution of physical quantities at different
temperatures, which greatly saves computational time. Using the dynamical finite-size scaling analysis for the
nonequilibrium relaxation, one can study the dynamical properties of phase transitions together with the
equilibrium ones. We demonstrate the procedure for the Ising model with the Metropolis algorithm, but the
present formalism is general and can be applied to a variety of systems as well as with different Monte Carlo
update schemes.
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The Monte Carlo simulation has served as a standard
method to treat many-body problems in statistical physics
[1]. Metropolis et al. [2] used the importance sampling,
which generates the states with a probability proportional to
the Boltzmann factor. The importance sampling method can
be considered as a reweighting technique in a sense that one
samples a trial distribution and takes an average for the true
distribution with reweighting. A more direct way of re-
weighting is found in the histogram reweighting method due
to Ferrenberg and Swendsen[3], where equilibrium thermal
averages for a range of temperatures can be calculated from
a single simulation. This method greatly improves the effi-
ciencies of Monte Carlo simulations; however, the histogram
reweighting technique must be used only to calculate equi-
librium properties.

Recently, the nonequilibrium relaxation method has been
successfully applied to the study of critical phenomena
[4–7]. In the nonequilibrium relaxation method, simulations
were performed for several temperatures; the critical tem-
perature, the dynamical exponent, and other quantities are
estimated using the scaling behavior of the nonequilibrium
process. If we combine the strength of nonequilibrium relax-
ation method with a reweighting technique, we can expect an
effective method of simulation.

In this paper, we will present a generic reweighting
method that is applicable to both equilibrium and nonequi-
librium systems. With reweighting at nonequilibrium, only a
simulation at a single temperature is required. Our method of
reweighting may also be applicable in a multitude of other
nonequilibrium processes, such as the contact process[8]
and the driven diffusive systems[9].

Reweighting at nonequilibrium can be easily understood
as follows. Consider every simulation up to thetth Monte
Carlo step as a sequence of states(or path),

xWt = ss1,s2,…,std, s1d

wherest is the system configuration at timet. Hereafter, we
refer to the Monte Carlo step simply as the time of simula-
tion. Such a pathxWt can be generated using any Monte Carlo
method at a temperatureT. The objective is to calculate the

relative probability of generating the same pathxWt at another
temperatureT8.

Suppose many simulations were performed at an inverse
temperatureb=1/kBT to obtain a set of pathsxWt

j, j =1,… ,n.
(From now on,b will be sometimes referred to as tempera-
ture.) The dynamical thermal average of some quantityQstd
can be obtained bykQstdlb=s1/ndo j=1

n QsxWt
jd. To calculate the

dynamical thermal average at another temperatureb8, the
measured quantityQsxWt

jd has to be reweighted with a set of
weightswt

j. For the same set of pathsxWt
j, the thermal average

at b8 is obtained as

kQstdlb8 = o
j=1

n

wt
jQsxWt

jdYo
j=1

n

wt
j . s2d

Although not labeled explicitly in Eq.(2), the set of weights
wt

j depend on the simulation temperatureb and the new tem-
peratureb8. To calculate the weights, the following algo-
rithm is implemented for each pathxWt

j, j =1,… ,n.
(1) Assume that the Monte Carlo simulation is carried out

at a temperatureb, and a pathxWt
j =ss1

j ,… ,st
jd for some arbi-

trary time t is obtained.
(2) To go from timet, let s8 j be a trial configuration and

Tss8 j ust
jd be the probability to select this configuration. If

the trial move is accepted with the acceptance probability
Abss8 j ust

jd, then the new configuration att+1 becomes
st+1

j =s8 j. If the move is not accepted,st+1
j =st

j.
(3) In terms of the transition probabilityPbsst+1

j ust
jd, we

may write it as Pbsst+1
j ust

jd=Tss8 j ust
jdAbss8 j ust

jd if the
move is accepted and asPbsst+1

j ust
jd=Tss8 j ust

jdf1
−Abss8 j ust

jdg otherwise.
(4) Then the appropriate weightswt+1

j can be obtained by

wt+1
j =

Pb8sst+1
j ust

jd

Pbsst+1
j ust

jd
wt

j with w1
j = 1. s3d

(5) Repeat steps 2 to 4 untilt reaches some predetermined
maximum simulation time.

For each pathxWt
j, j =1,… ,n, these steps are repeated. Step

2 is simply the standard Monte Carlo procedure of accep-
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tance and rejection. Step 3 calculates the transition probabil-
ity after the decision on acceptance is made. Step 4 updates
the appropriate weight. In this method, essentially, the usual
Monte Carlo update is carried out, and at the same time the
weights are updated.

The proof of Eq.(3) involves two ingredients, the sequen-
tial importance sampling(SIS) [10–12] method and a generic
Monte Carlo method. A brief description of the SIS method
will be discussed here. The SIS method assumes that the
distribution for a multidimensional statexWt=ss1,s2,… ,std is
known and let it be denoted byptsxWtd. Implementation of the
SIS algorithm is as follows:

(1) Draw st+1
j from a trial distributiongt+1sst+1

j uxWtd to form
xWt+1

j =sxWt
j ,st+1

j d.
(2) The importance weight att+1 is given by

wt+1
j =

pt+1sxWt+1
j d

ptsxWt
jdgt+1sst+1

j uxWt
jd

wt
j . s4d

The key to understanding the reweighting method is to real-
ize that in a Monte Carlo simulation, the time sequencexWt

j is
sampled from the true probability distribution of the path at
some temperatureb. The Monte Carlo method is Markovian
and the probability of obtaining the path is given by

PbsxWt
jd = Pbsst

just−1
j d¯Pbss2

j us1
j dPss1

j d, s5d

wherePbsst
just−1

j d is the probability of getting a system con-
figurationst

j at timet, given that the system configuration is
st−1

j at an earlier timet−1. Pss1
j d is the probability of choos-

ing the initial configuration. One may obtain the probability
distribution function,Pb8sxWt

jd, of the path at another tempera-
ture b8 using PbsxWt

jd as a trial distribution. The SIS method
can then be used by defining the following quantities in Eq.
(4) as

pt+1sxWt+1
j d ; Pb8sxWt+1

j d, s6d

ptsxWt
jd ; Pb8sxWt

jd, s7d

gt+1sst+1
j uxWt

jd ; Pbsst+1
j uxWt

jd. s8d

The requirement for the Monte Carlo process being Markov-
ian implies Pbsst+1

j uxWt
jd=Pbsst+1

j ust
jd, and using Eq.(5), we

obtain

wt+1
j =

Pb8sxWt+1
j d

Pb8sxWt
jdPbsst+1

j uxWt
jd

wt
j =

Pb8sst+1
j ust

jd

Pbsst+1
j ust

jd
wt

j , s9d

which is as presented in Eq.(3). The initial condition in Eq.
(3) is w1

j =1 because the initial system configuration is cho-
sen from a distribution independent of temperature.

To illustrate how the reweighting algorithm is imple-
mented, we use the ferromagnetic Ising model on a square
lattice. Its Hamiltonian is given by

H = − o
kkll

sksl , s10d

where the sum is over nearest neighbors andsk takes the
values 61. Periodic boundary conditions are used on a

L3L lattice. We use the single spin-flip update with the
Metropolis acceptance rate, but other update schemes are
also applicable. The simulation is performed atb; the objec-
tive is to reweight it tob8. The system configurations is
denoted by the states of all spins,s=hs1,¯ ,sNj, whereN is
the total number of sites. The initial system configuration at
time t=1 is set tosk= +1 for all k=1,¯ ,N. Hencew1

j =1 for
j =1,¯ ,n; recall that j is used for indexing different paths.
For each pathxWt

j =ss1
j ,s2

j ,¯ ,st
jd,

(1) Choose a spin and flip it with probability,Abss8 just
jd

=minf1, exps−bDEdg. Here,DE is the energy change due to
the spin flip.

(2) At this point, there are three possible outcomes.(a) If
DEø0, the proposed spin flip is always accepted; and we
obtain wt+1

j =wt
j 31. (b) If DE.0 and the proposed spin

flip is accepted, we obtainwt+1
j =wt

j 3expf−sb8−bdDEg. (c)
If DE.0 and the proposed spin flip is rejected, we obtain
wt+1

j =wt
j 3 f1−exps−b8DEdg / f1−exps−bDEdg.

(3) Although the weights should be updated for every
single spin flip move, thermal quantities may be recorded
only once perN single spin-flip steps, for example, to save
memory. Lett be the time in unit of Monte Carlo steps per
site (MCSS); weights wt

j and moments of magnetization
smldt

j , l=1,2,4 (i.e., m, m2, andm4 moments) are accumu-
lated into the sums,o jwt

j , o jsmldt
j ando jsmldt

j wt
j .

We carried out many simulations to obtain a set of paths
xWt

j, j =1,¯ ,n. Finally, the dynamical thermal averages for
each timet, kmstdllb8, for example, can be calculated from
the accumulated sums using Eq.(2). In practice, reweighting
to many temperaturesb18 ,b28 ,¯ were made at the same time
in a single run.

Figure 1 shows the plots of the temporal evolution of
magnetization for several reweighted temperatures from
simulations at a single temperatureT=2.270 (bold line) on
the L=64 square lattice. These data were generated with
three independent runs to estimate error bars; for each run,
averages were taken over 2.943105 samples. The effective
range is about DT=0.002 for

FIG. 1. Plot of magnetization for reweighted temperatures from
simulations at a single temperatureT=2.270(bold line). From top
to bottom,T=2.268, 2.269, 2.270, 2.271, 2.272. The system size is
L=64. t represents the Monte Carlo time in units of MCSS. The
inset shows the region between 1000 to 2000 MCSS with represen-
tative error bars.
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L=64. The inset shows the region between 1000 and 2000
MCSS with representative error bars. The error bars become
larger as reweighting is done at temperatures further away
from the simulation temperature. Similar to the argument put
forward by Ferrenberg and Swendsen[3], reweighting is ef-
fective when the distributionsPbsxWt

jd andPb8sxWt
jd have suffi-

cient overlaps. An additional simulation, performed atT
=2.268, for example, yields the results consistent with the
reweighted ones within statistical errors. A more detailed
comparison of actual and reweighted data will be discussed
shortly.

The ratio of the moments of the order parameter is used
for the analysis of the phase transition[13]. Figure 2 shows
plots of kmstd4l / kmstd2l2 for several reweighted tempera-
tures from simulations atT=2.270. From top to bottom,T
=2.272, 2.271, 2.270, 2.269, 2.268, 2.267. The lattice size
wasL=32 and accuracy of reweighting was checked by per-
forming an additional simulation atT=2.268. This simula-
tion was then reweighted toT=2.270 and compared to the
curve from the original simulation. The dashed line in Fig. 2
shows kmstd4l / kmstd2l2 at T=2.270 reweighted fromT
=2.268. The inset shows that the difference between the
dashed line and solid line is about 5310−4 while the error
bars ofkmstd4l / kmstd2l2 are of the order 10−3. Averages were
taken with the 1.283106 samples. The systematic errors due
to reweighting are smaller than the statistical errors for this
temperature shift.

Equilibrium properties can be calculated using reweight-
ing by performing the simulation up to equilibrium and be-
yond, and then disregarding the data at nonequilibrium. In
this domain, our reweighting method yields the same results
as the histogram reweighting[3] method. Figure 3 shows
Binder’s cumulants[13] for L=32, L=48, L=64, andL=80.
Simulations were performed at one temperature for each lat-
tice size. The crossing of curves with different sizes yields

the determination of the critical temperatureTc. In the
present case, we confirm that the exactTc=2.2691… is well
reproduced. Simulation temperatures are indicated by ar-
rows;T=2.27 forL=32, 48, andT=2.269 forL=64, 80. The
reweighting temperature range we used isDT=0.004 forL
=32, 48,DT=0.002 forL=64, andDT=5310−4 for L=80.
Error bars were generated with several independent simula-
tions, and they are smaller than the size of the symbols. This
suggests that the effective reweighting temperature range is
actually larger than the temperature range we used in our
calculations. For each independent run, averages were taken
with 1.283106 samples forL=32, 2.593105 samples for
L=48, 1.283105 samples forL=64, and 43104 samples for
L=80.

The dynamical finite-size scaling[14] can be used in
combination with nonequilibrium relaxation[15,16]. Making
use of the scaling form[17],

kmstd4l/kmstd2l2 = gstL−zd s11d

the dynamical exponentz can be estimated by plotting
kmstd4l / kmstd2l2 versus tL−z at the knownTc=2.2691…
value (Fig. 4. The estimate ofz is obtained when curves of
different sizes are collapsed into a single curve. The best fit
for the data collapse is obtained by choosingz
=2.143±0.063 for all the data shown in Fig. 4. For the
curves ofL=32 and 48, the best fit occurs atz=2.11±0.02.
The best fit is obtained atz=2.138±0.039 forL=48 and 64,
and atz=2.143±0.063 forL=64 and 80. We have given the
error bars onz from the variance of the estimate ofz by a set
of independent runs. Simulations were performed at rela-
tively small system sizes compared to more extensive simu-
lations[17,18]. Considering the effect of corrections to scal-
ing, our value ofz is, within the error bars, approaching the
values that were previously reported,z=2.16,2.17[17–19].

To summarize, we have presented a reweighting method
for nonequilibrium Markov processes.We have shown the
basis of this method starting from the formulation of the SIS
method. As a demonstration, we have used the Ising model

FIG. 2. Values ofkmstd4l / kmstd2l2 for reweighted temperatures
from simulations atT=2.270. From top to bottom,T=2.272, 2.271,
2.270, 2.269, 2.268, 2.267. To check the range of reweighting, an
additional simulation was performed atT=2.268 and reweighted to
T=2.270. The dashed line showskmstd4l / kmstd2l2 at T=2.270 re-
weighted fromT=2.268. The inset shows that the difference be-
tween the dashed line and solid line is about 5310−4 while the
error bars onkmstd4l / kmstd2l2 are of the order 10−3. The system
size isL=32. t represents the Monte Carlo time in units of MCSS.

FIG. 3. Binder’s cumulants forL=32, L=48, L=64, andL=80.
The simulation temperatures are indicated by arrows;T=2.27 for
L=32,48;T=2.269 forL=64,80. Error bars, when not shown, are
smaller than the size of the symbols.
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on a square lattice. With the nonequilibrium simulation at a
single temperature, we can determine the critical temperature
and critical exponents using finite-size scaling. The nonequi-
librium simulation for large enough systems[6,7] is one way

to extract dynamical and also static properties without wor-
rying about finite-size effects. The systematic analysis of
finite-size effects, the finite-size scaling[14–16], is another
way of studying nonequilibrium relaxation. The nonequilib-
rium reweighting is useful when it is combined with the
latter approach. We should note that this method is neither
restricted to single spin-flip updates nor the Ising model. This
method is applicable, in principle, whenever the ratio of
probabilitiesPb8sst+1

j ust
jd /Pbsst+1

j ust
jd can be calculated nu-

merically. It should be applicable with other Monte Carlo
update schemes such as the cluster update schemes[20,21]
as well as theN-fold way method[22]. We should mention
that Dickman[23] proposed a similar reweighting method
for the application to the contact process. However, our for-
malism is more extensive and general.
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asz=2.143 for this plot.
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